
CTL
This chapter describes the syntax and the use of CTL. For detailed information on language reference or
built-in functions see:

• Language Reference
• Functions Reference

Example 55.1. Example of CTL syntax (Rollup)

//#CTL string[] customers; integer Length; function void
initGroup(VoidMetadata groupAccumulator) { } function boolean
updateGroup(VoidMetadata groupAccumulator) { customers =
split($0.customers," - "); Length = length(customers);
return true; } function boolean finishGroup(VoidMetadata
groupAccumulator) { return true; } function integer
updateTransform(integer counter, VoidMetadata groupAccumulator) {
if (counter >= Length) { clear(customers); return
SKIP; } $0.customers = customers[counter];
$0.EmployeeID = $0.EmployeeID; return ALL; } function integer
transform(integer counter, VoidMetadata groupAccumulator) { return
ALL; }

Language	 Reference	

This section describes the following areas:

• Program Structure
• Comments
• Import Where?
• Data Types in CTL
• Literals
• Variables
• Dictionary in CTL
• Operators
• Simple Statement and Block of Statements
• Control Statements
• Functions
• Conditional Fail Expression
• Accessing Data Records and Fields
• Mapping
• Parameters

Program	 Structure	

Each program written in CTL must contain the following parts:

ImportStatements VariableDeclarations FunctionDeclarations Statements
Mappings

All of them may be interspersed, however there are some principles that are valid for them:

• If an import statement is defined, it must be situated at the beginning of the code.
• Variables and functions must first be declared and only then they can be used.
• Declarations of variables and functions, statements, and mappings may also be mutually

interspersed.

Important
In CTL declaration of variables and functions may be in any place of the transformation code and
may be preceded by other code. However, remember that each variable and each function must
always be declared before it is used.

	

Comments	

Throughout the program you can use comments. These comments are not processed, they only serve to
describe what happens within the program.

There are two types of comments. They can be one-line comments or multiline comments. See the
following two options:

• // This is an one-line comment.
• /* This is a multiline comment. */

Data	 Types	 in	 CTL	

For basic information about data types used in metadata see Data Types and Record Types. What? (see
where?)

In any program, you can use some variables. Data types in CTL are the following:

boolean	

Its declaration look like this: boolean identifier;

byte	

This data type is an array of bytes of a length that can be up to Integer.MAX_VALUE as a maximum. It
behaves similarly to the list data type (see below).

Its declaration looks like this: byte identifier;

cbyte	

This data type is a compressed array of bytes of a length that can be up to Integer.MAX_VALUE as a
maximum. It behaves similarly to the list data type (see below).

Its declaration looks like this: cbyte identifier;

date	

Its declaration look like this: date identifier;

decimal	

Its declaration looks like this: decimal identifier;

By default, any decimal may have up to 32 significant digits. If you want to have different Length or
Scale, you need to set these properties of decimal field in metadata.

Example 55.2. Example of usage of decimal data type in CTL

If you assign 100.0 /3 to a decimal variable, its value might for example be
33.333333333333335701809119200333. Assigning it to a decimal field (with default Length and
Scale, which are 8 and 2, respectively), it will be converted to 33.33D.

You can cast any float number to the decimal data type by apending the d letter to its end.

integer	

Its declaration looks like this: integer identifier;

If you apend a l letter to the end of any integer number, you can cast it to the long data type.

long	

Its declaration looks like this: long identifier;

Any integer number can be cast to this data type by appending a l letter to its end.

number	 (double)	

Its declaration looks like this: number identifier;

string	

Its declaration looks like this: string identifier;

list	

Each list is a container of one the following data types: boolean, byte, date, decimal, integer,
long, number, string, or record.

The list data type is indexed by integers starting from 0.

Its declaration can look like this: string[] identifier;

Lists cannot be created as a list of lists or maps.

The default list is an empty list.

Examples:

integer[] myIntegerList; myIntegerList[5] = 123;

Customer JohnSmith;

Customer PeterBrown;

Customer[] CompanyCustomers;

CompanyCustomers[0] = JohnSmith;

CompanyCustomers[1] = PeterBrown

Assignments:

• myStringList[3] = "abc";

It means that the specified string is put to the fourth position in the string list. The other values are
fille with null as follows:

myStringList is [null,null,null,"abc"]

• myList1 = myList2;

It means that both lists reference the same elements.

• myList1 = myList1 + myList2;

It adds all elements of myList2 to the end of myList1.

Both lists must be based on the same primitive data type.

• myList1 = myList1 + "abc";

It adds the "abc"string to the myList1 as its new last element.

myList1 must be based on string data type.

• myList1 = null;

It destroys the myList1.

Be careful when performing list operations (such as append). See Warning.

map	

This data type is a container of pairs of a key and a value.

Its declaration looks like this: map[<type of key>, <type of value>] identifier;

Both the Key and the Value can be of the following primitive data types: boolean, byte, date,
decimal, integer, long, number, string. Value can be also of record type.

Map cannot be created as a map of lists or other maps.

The default map is an empty map.

Examples:

map[string, boolean] map1; map1["abc"]=true;

Customer JohnSmith;

Customer PeterBrown;

map[integer, Customer] CompanyCustomersMap;

CompanyCustomersMap[JohnSmith.ID] = JohnSmith;

CompanyCustomersMap[PeterBrown.ID] = PeterBrown

The assignments are similar to those valid for a list.

Literals	

Literals serve to write values of any data type.

Table 55.1. Literals

Literal Description Declaration	
syntax Example

integer digits	 representing	 integer	
number [0-‐9]+ 95623

long	 integer

digits	 representing	 integer	
number	 with	 absolute	 value	
even	 greater	 than	 231,	 but	
less	 than	 263

[0-‐9]+L? 257L,	 or	
9562307813123123

hexadecimal	
integer

digits	 and	 letters	
representing	 integer	 number	
in	 hexadecimal	 form

0x[0-‐9A-‐F]+ 0xA7B0

octal	 integer digits	 representing	 integer	 number	 in	 octal	 form 0[0-‐7]* 0644

number	
(double)

floating	 point	 number	
represented	 by	 64bits	 in	
double	 precision	 format

[0-‐9]+.[0-‐9]+ 456.123

Literal Description Declaration	
syntax Example

decimal digits	 representing	 a	 decimal	
number [0-‐9]+.[0-‐9]+D 123.456D

double	
quoted	
string

string	 value/literal	 enclosed	
in	 double	 quotes;	 escaped	
characters	 [\n,\r,\t,	 \\,	 \",	
\b]	 get	 translated	 into	
corresponding	 control	 chars

"...anything	
except	 ["]..." "hello\tworld\n\r"

single	
quoted	
string

string	 value/literal	 enclosed	
in	 single	 quotes;	 only	 one	
escaped	 character	 [\']	 gets	
translated	 into	
corresponding	 char	 [']

'...anything	
except	 [']...' 'hello\tworld\n\r'

list	 of	 literals
list	 of	 literals	 where	
individual	 literals	 can	 also	 be	
other	 lists/maps/records

[<any	 literal>	
(,	 <any	
literal>)*]

[10,	 'hello',	 "world",	
0x1A,	 2008-‐01-‐01],	 [[
1	 ,	 2]]	 ,	 [3	 ,	 4]]

date date	 value
this	 mask	 is	
expected:	
yyyy-‐MM-‐dd

2008-‐01-‐01

datetime datetime	 value

this	 mask	 is	
expected:	
yyyy-‐MM-‐dd	
HH:mm:ss

2008-‐01-‐01	 18:55:00

	

Important
You cannot use any literal for byte data type. If you want to write a byte value, you must use
any of the conversion functions that return byte and aply it on an argument value.

For information on these conversion functions see Conversion Functions

Important
Remember that if you need to assign decimal value to a decimal field, you should use decimal
literal. Otherwise, such a number would not be decimal, it would be a double number!

For example:

1. Decimal value to a decimal field (correct and accurate)

// correct - assign decimal value to decimal field

myRecord.decimalField = 123.56d;

2. Double value to a decimal field (possibly inaccurate)

// possibly inaccurate - assign double value to decimal

field

myRecord.decimalField = 123.56;

The latter might produce inaccurate results!

Variables	

If you define some variable, you must do it by typing the data type of the variable, white space, the name of
the variable, and a semicolon.

Such a variable can be initialized later, but it can also be initialized in the declaration itself. Of course, the
value of the expression must be of the same data type as the variable.

Both cases of variable declaration and initialization are shown below:

• dataType variable;
...
variable = expression;

• dataType variable = expression;

Dictionary	 in	 CTL	

If you want to have a dictionary in your graph and access an entry from CTL, you must define it in the
graph as shown in What? (no link/table)

To access the entries from CTL, use the dot syntax as follows:

dictionary.<dictionary entry>

This expression can be used to

• define the value of the entry:

dictionary.customer = "John Smith";

• get the value of the entry:

myCustomer = dictionary.customer;

• map the value of the entry to an output field:

$0.myCustomerField = dictionary.customer;

• serve as the argument of a function:

myCustomerID = isInteger(dictionary.customer);

Operators	

The operators serve to create more complicated expressions within the program. They can be arithmetic,
relational, and logical. The relational and logical operators serve to create expressions with resulting
boolean value. The arithmetic operators can be used in all expressions, not only the logical ones.

All operators can be grouped into three categories:

• Arithmetic Operators
• Relational Operators
• Logical Operators

Arithmetic	 Operators	

The following operators serve to put together values of different expressions (except those of boolean
values). These signs can be used more times in one expression. In such a case, you can express priority of
operations by parentheses. The result depends on the order of the expressions.

• Addition

+

The operator above serves to sum the values of two expressions.

But the addition of two boolean values or two date data types is not possible. To create a new
value from two boolean values, you must use logical operators instead.

Nevertheless, if you want to add any data type to a string, the second data type is converted to a
string automatically and it is concatenated with the first (string) summand. But remember that the
string must be on the first place What?! Naturally, two strings can be summed in the same way.
Note also that the concat() function is faster, and you should use this function instead of
adding any summand to a string.

You can also add any numeric data type to a date. The result is a date in which the number of days
is increased by the whole part of the number. Again, here is also necessary to have the date on the
first place.

The sum of two numeric data types depends on the order of the data types. The resulting data type
is the same as that of the first summand. The second summand is converted to the first data type
automatically.

• Subtraction and Unitary minus

-

The operator serves to subtract one numeric data type from another. Again the resulting data type
is the same as that of the minuend. The subtrahend is converted to the minuend data type
automatically.

But it can also serve to subtract numeric data type from a date data type. The result is a date in
which the number of days is reduced by the whole part of the subtrahend.

• Multiplication

*

The operator serves only to multiplicate two numeric data types.

Remember that during multiplication the first multiplicand determines the resulting data type of
the operation. If the first multiplicand is an integer number and the second is a decimal, the result
will be an integer number. On the other hand, if the first multiplicand is a decimal and the second
is an integer number, the result will be a decimal data type. In other words, the order of
multiplicands is important.

• Division

/

The operator serves only to divide two numeric data types. Remember that you must not divide by
zero. Dividing by zero throws TransformLangExecutorRuntimeException or gives
Infinity (in case of a number data type).

Remember that during division the numerator determines the resulting data type of the operation.
If the nominator is an integer number and the denominator is a decimal, the result will be an
integer number. On the other hand, if the nominator is a decimal and the denominator is an integer
number, the result will be of decimal data type. In other words, data types of nominator and
denominator are of importance.

• Modulus

%

The operator can be used for both floating-point data types and integer data types. It returns the
remainder of division.

• Incrementing

++

The operator serves to increment numeric data type by one. The operator can be used for both
floating-point data types and integer data types.

If it is used as a prefix, the number is incremented first and then it is used in the expression.

If it is used as a postfix, first, the number is used in the expression and then it is incremented.

Important
Remember that the incrementing operator cannot be applied on literals, record fields,
map, or list values of integer data type. It can only be used with integer variables.

• Decrementing

--

The operator serves to decrement numeric data type by one. The operator can be used for both
floating-point data types and integer data types.

If it is used as a prefix, the number is decremented first, and then used in the expression.

If it is used as a postfix, the number is first used in the expression, and then decremented.

Important
Remember that the decrementing operator cannot be applied on literals, record fields,
map, or list values of integer data type. It can only be used with integer variables.

Relational	 Operators	

The following operators serve to compare some subexpressions when you want to obtain a boolean value
result. Each of the mentioned signs can be used. If you choose the .operator. signs, they must be
surrounded by white spaces. These signs can be used more than once in one expression. In such a case you
can express priority of comparisons by parentheses.

• Greater than

Each of the two signs below can be used to compare expressions consisting of numeric, date, and
string data types. Both data types in the expressions must be comparable. The result can depend on
the order of the two expressions if they are of different data type.

o >
o .gt.

• Greater than or equal to

Each of the three signs below can be used to compare expressions consisting of numeric, date, and
string data types. Both data types in the expressions must be comparable. The result can depend on
the order of the two expressions if they are of different data type.

o >=
o =>
o .ge.

• Less than

Each of the two signs below can be used to compare expressions consisting of numeric, date, and
string data types. Both data types in the expressions must be comparable. The result can depend on
the order of the two expressions if they are of different data type.

o <
o .lt.

• Less than or equal to

Each of the three signs below can be used to compare expressions consisting of numeric, date, and
string data types. Both data types in the expressions must be comparable. The result can depend on
the order of the two expressions if they are of different data type.

o <=
o =<
o .le.

• Equal to

Each of the two signs below can be used to compare expressions of any data type. Both data types
in the expressions must be comparable. The result can depend on the order of the two expressions
if they are of different data type.

o ==
o .eq.

• Not equal to

Each of the three signs below can be used to compare expressions of any data type. Both data
types in the expressions must be comparable. The result can depend on the order of the two
expressions if they are of different data type.

o !=
o <>
o .ne.

• Matches regular expression

The operator serves to compare string and some regular expression. It returns true if the whole
string matches the regular expression, otherwise returns false.

o ~=
o .regex.

• Contains regular expression

The operator serves to compare string and some regular expression. It returns true if the string
contains a substring that matches the regular expression, otherwise returns false.

o ?=

• Contained in

This operator serves to specify whether some value is contained in the list or in the map of other
values.

The operator has double syntax. See following examples:

1. boolean myBool; string myString; string[] = myList; ... myBool
= myString.in(myList);
2. boolean myBool; string myString; string[] = myList; ... myBool
= in(myString,myList);

Logical	 Operators	

If the expression whose value must be of boolean data type is complicated, it can consist of some
subexpressions (see above) that are put together by logical conjunctions (AND, OR, NOT, EQUAL TO,
NOT EQUAL TO). If you want to express priority in such an expression, you can use parentheses. From
the conjunctions mentioned below you can choose either form (for example, && or and, etc.).

Every sign of the form .operator. must be surrounded by white space.

• Logical AND
o &&
o and

• Logical OR
o ||
o or

• Logical NOT
o !
o not

• Logical EQUAL TO
o ==
o .eq.

• Logical NOT EQUAL TO
o !=
o <>
o .ne.

Assignment	 Operator	

Example 55.3. Clearing a copied list

 integer[] list1 = [1, 2, 3];
 integer[] list2;
 list2 = list1;
 list1.clear(); // only list1 is cleared (old implementation:
list2 was cleared, too)

Simple	 Statement	 and	 Block	 of	 Statements	

All statements can be divided into two groups:

• Simple statement is an expression terminated by semicolon.

For example:

integer MyVariable;

• Block of statements is a series of simple statements (each of them is terminated by semicolon).
The statements in a block can follow each other in one line or they can be written in more lines.
They are surrounded by curled braces. No semicolon is used after the closing curled brace.

For example:

while (MyInteger<100) { Sum = Sum + MyInteger;
MyInteger++; }

	

Control	 Statements	

Some statements serve to control the process of the program.

All control statements can be grouped into the following categories:

• Conditional Statements
• Iteration Statements
• Jump Statements

Conditional	 Statements	

These statements serve to branch out the process of the program.

If	 Statement	

On the basis of the Condition value this statement decides whether the Statement should be
executed. If the Condition is true, Statement is executed. If it is false, the Statement is ignored
and process continues next after the if statement. Statement is either simple statement or a block of
statements

• if (Condition) Statement

Unlike the previous version of the if statement (in which the Statement is executed only if the
Condition is true), other Statements that should be executed even if the Condition value is false
can be added to the if statement. Thus, if the Condition is true, Statement1 is executed, if it is false,
Statement2 is executed. See below:

• if (Condition) Statement1 else Statement2

The Statement2 can even be another if statement and also with else branch:

• if (Condition1) Statement1 else if (Condition2) Statement3
else Statement4

Switch	 Statement	

Sometimes you would have a very complicated statement if you created the statement out of more branched
out if statements. In such a case, it is better to use the switch statement.

Now, instead of the Condition as in the if statement with only two values (true or false), an
Expression is evaluated and its value is compared with the Constants specified in the switch
statement.

Only the Constant that equals to the value of the Expression decides which of the Statements is
executed.

If the Expression value is Constant1, the Statement1 will be executed, etc.

Important
Remember that literals must be unique in the Switch statement.

• switch (Expression) { case Constant1 : Statement1 StatementA
[break;] case Constant2 : Statement2 StatementB [break;]
... case ConstantN : StatementN StatementW [break;] }

The optional break; statements ensure that only the statements correspoding to a constant will be
executed. Otherwise, all below them would be executed as well.

In the following case, even if the value of the Expression does not equal to the values of the
Constant1,...,ConstantN, the default statement (StatementN+1) is executed.

• switch (Expression) { case Constant1 : Statement1 StatementA
[break;] case Constant2 : Statement2 StatementB [break;]
... case ConstantN : StatementN StatementW [break;]
default : StatementN+1 StatementZ }

Iteration	 Statements	

These iteration statements repeat some processes during which some inner Statements are executed
cyclically until the Condition that limits the execution cycle becomes false or they are executed for all
values of the same data type.

For	 Loop	

First, the Initialization is set up. After that, the Condition is evaluated, and if its value is true, the
Statement is executed and finally the Iteration is made.

During the next cycle of the loop, the Condition is evaluated again. If it’s true, the Statement is
executed and an Iteration is made. This process repeats until the Condition becomes false. The
loop is then terminated and the process continues with the other part of the program.

If the Condition is false at the beginning, the process jumps over the Statement out of the loop.

• for (Initialization;Condition;Iteration) Statement

Important
Remember that the Initialization part of the For Loop may also contain the declaration
of the variable that is used in the loop.

Initialization, Condition, and Iteration are optional.

Do-‐While	 Loop	

First, the Statement is executed; then, the process depends on the value of the Condition. If its value
is true, the Statement is executed again, and the Condition is then evaluated again and the
subprocess either continues (if it is true again) or stops and jumps to the next or higher level subprocesses
(if it is false). Since the Condition is at the end of the loop, even if it is false at the beginning of the
subprocess, the Statement is executed at least once.

• do Statement while (Condition)

While	 Loop	

This process depends on the value of Condition. If its value is true, the Statement is executed; then,
the Condition is evaluated again and the subprocess either continues (if it is true again), or stops and
jumps to the next or higher level subprocesses (if it is false). Since the Condition is at the start of the
loop, if it is false at the beginning of the subprocess, the Statement is not executed at all and the loop is
jumped over.

• while (Condition) Statement

For-‐Each	 Loop	

The foreach statement is executed on all fields of the same data type within a container. Its syntax is as
follows:

• foreach (<data type> myVariable : iterableVariable) Statement

All elements of the same data type (data type is declared in this statement) are searched in the
iterableVariable container. The iterableVariable can be a list or a record. For each variable
of the same data type, specified Statement is executed. It can be either a simple statement or a block of
statements.

Thus, for example, the same Statement can be executed for all string fields of a record, etc.

Note
It is possible to iterate over values of a map (i.e. not whole <entries>). Remember the type of
the loop variable has to match the type of map's values:

 map[string, integer] myMap;
 myMap["first"] = 1; myMap["second"] = 2;
 foreach(integer value: myMap) { printErr(value); //
prints 1 and 2 }

To obtain map's keys as a list[], use the getKeys() function.

Jump	 Statements	

Sometimes you need to control the process in a different way than by a decision based on the Condition
value. To do that, you have the following options:

Break	 Statement	

If you want to stop some subprocess, you can use the following statement in the program:

• break;

The subprocess breaks and the process jumps to the higher level or to the next Statement.

Continue	 Statement	

If you want to stop some iteration subprocess, you can use the following statement in the program:

• continue;

The subprocess breaks and the process jumps to the next iteration step.

Return	 Statement	

In the functions you can use the return word either alone or along with an expression. (See the
following two options below.) The return statement can be in any place within the function. There may
also be multiple return statements among which a specific one is executed depending on a condition, etc.

• return;
• return expression;

	

Error	 Handling	

CTL also provides a simple mechanism for catching and handling possible errors.

It only uses a set of optional OnError() functions that exist to each required transformation function.

For example, for required functions (e.g., append(), transform(), etc.), there exist the following
optional functions:

appendOnError(), transformOnError(), etc.

Each of these required functions may have its (optional) couterpart whose name differs from the original
(required) by adding the OnError suffix.

Moreover, every <required ctl template function>OnError() function returns the same
values as the original required function.

This way, any exception that is thrown by the original required function causes call of its <required
ctl template function>OnError() counterpart (e.g., transform() fail may call
transformOnError(), etc.).

In this transformOnError(), any incorrect code can be fixed, an error message can be printed to
Console, etc.

Important
Remember that these OnError() functions are not called when the original required functions
return Error codes (values less then -1)! If you want that some OnError() function is called,
you need to use a raiseError(string arg) function. Or also, any exception thrown by
original required function calls its OnError() counterpart.

	

Functions	

You can define your own functions in the following way:

function returnType functionName (type1 arg1, type2 arg2,..., typeN
argN) {
variableDeclarations
 otherFunctionDeclarations
Statements Mappings
return [expression];
}

You must put the return statement at the end. For more information about the return statement see Return
Statement. Inside some functions, there can be Mappings. These may be in any place inside the function.

In addition to any other data type mentioned above, the function can also return void.

Message	 Function	
	
function string getMessage() { return message; }

This message variable should be declared as a global string variable and defined anywhere in the code so
as to be used in the place where the getMessage() function is located. The message will be written to
console.

	

Conditional	 Fail	 Expression	

You can also use conditional fail expressions.

They look like this:

expression1 : expression2 : expression3 : ... : expressionN;

This conditional fail expression may be used for mapping, assignment to a variable, and as an argument of
a function too.

The expressions are evaluated one by one, starting from the first expression and going from left to right.

1. As soon as one of these expressions may be successfully assigned to a variable, mapped to an
output field, or used as the argument of the function, it is used and the other expressions are not
evaluated.

2. If none of these expressions may be used (assigned to a variable, mapped to the output field, or
used as an argument), graph fails.

Important
Remember that in CTL this expression may be used in multiple ways: for assigning to a variable,
mapping to an output field, or as an argument of the function.

Remember also that this expression can only be used in an interpreted mode of CTL.

Accessing	 Data	 Records	 and	 Fields	

This section describes the way that the record fields should be worked with. As you know, each component
may have ports. Both input and output ports are numbered starting from 0.

Metadata of connected edges must be identified by their names. Different metadata must have different
names.

Working	 with	 Records	 and	 Variables	

Important
Since v. 3.2, the syntax has changed to:

$in.portID.fieldID and $out.portID.fieldID

e.g. $in.0.* = $out.0.*;

That way, you can clearly distinguish input and output metadata.

Transformations you have written before will be compatible with the old syntax.

Now we suppose that Customers is the ID of metadata, their name is customers, and their third field
(field 2) is firstname.

Following expressions represent the value of the third field (field 2) of the specified metadata:

• $<port number>.<field number>

Example: $0.2

$0.* means all fields on the first port (port 0).

• $<port number>.<field name>

Example: $0.firstname

• $<metadata name>.<field number>

Example: $customers.2

$customers.* means all fields on the first port (port 0).

• $<metadata name>.<field name>

Example: $customers.firstname

You can also define records in CTL code. Such defitions can look like these:

• <metadata name> MyCTLRecord;

Example: customers myCustomers;

• After that, you can use the following expressions:

<record variable name>.<field name>

Example: myCustomers.firstname;

Mapping of records to variables looks like this:

• myVariable = $<port number>.<field number>;

Example: FirstName = $0.2;

• myVariable = $<port number>.<field name>;

Example: FirstName = $0.firstname;

• myVariable = $<metadata name>.<field number>;

Example: FirstName = $customers.2;

• myVariable = $<metadata name>.<field name>;

Example: FirstName = $customers.firstname;

• myVariable = <record variable name>.<field name>;

Example: FirstName = myCustomers.firstname;

Mapping of variables to records can look like this:

• $<port number>.<field number> = myVariable;

Example: $0.2 = FirstName;

• $<port number>.<field name> = myVariable;

Example: $0.firstname = FirstName;

• $<metadata name>.<field number> = myVariable;

Example: $customers.2 = FirstName;

• $<metadata name>.<field name> = myVariable;

Example: $customers.firstname = FirstName;

• <record variable name>.<field name> = myVariable;

Example: myCustomers.firstname = FirstName;

Important
Remember that if component has single input port or single output port, you can use the syntax as
follows:

$firstname

Generally, the syntax is:

$<field name>

Important
You can assign input to an internal CTL record using following syntax:

MyCTLRecord.* = $0.*;

Also, you can map values of an internal record to the output using following syntax:

$0.* = MyCTLRecord.*;

Mapping	

Calculated or generated values—or values of input fields—are assigned (mapped) to output fields.

1. Mapping assigns a value to an output field.
2. Mapping operator is the following:

=

3. Mapping must always be defined inside a function.
4. Mapping may be defined in any place inside a function.
5. Remember that you can also wrap a mapping in a user-defined function, which would be

subsequently used inside another function.
6. You can also map different input metadata to different output metadata by field names or by field

positions. See examples below.

Mapping	 of	 Different	 Metadata	 (by	 Name)	

When you map input to output like this:

$0.* = $0.*;

input metadata may even differ from those on the output.

In the expression above, fields of the input are mapped to the fields of the output that have the same name
and type as those of the input. The order in which they are contained in respective metadata and the number
of all fields in either metadata is of no importance.

When you have input metadata in which the first two fields are firstname and lastname, each of
these two fields is mapped to its counterpart on the output. Such output firstname field may even be the
fifth and lastname field be the third, but those two fields of the input will be mapped to these two output
fields.

Even if input and output metadata had more fields, such fields would not be mapped to each other if there
did not exist an output field with the same name as one of the input fields (independently on the mutual
position of the fields in corresponding metadata).

In addition to the simple mapping as shown above ($0.* = $0.*;) you can also use the following
function:

void copyByName(record to, record from);

Example 55.4. Mapping of Metadata by Name (using the copyByName() function)

recordName2 myOutputRecord; copyByName(myOutputRecord.*,$0.*); $0.* =
myOutputRecord.*;
	

Important
Metadata fields are mapped from input to output by name and data type independently on their
order and on the number of all fields!

The following syntax may also be used: myOutputRecord.copyByName($0.*);

Mapping	 of	 Different	 Metadata	 (by	 Position)	

Sometimes you need to map input to ouput, but names of input fields are different from those of output
fields. In such a case, you can map input to output by position.

To achieve this, you must use the following function:

void copyByPosition(record to, record from);

Example 55.5. Mapping of Metadata by Position

recordName2 myOutputRecord; copyByPosition(myOutputRecord,$0.*); $0.* =
myOutputRecord.*;
	

Important
Metadata fields may be mapped from input to output by position (as shown in the example above)!

Following syntax may also be used: myOutputRecord.copyByPosition($0.*);

Use	 Case	 1	 -‐	 One	 String	 Field	 to	 Upper	 Case	

To show in more details how mapping works, here are a few examples of mappings.

We have a graph with a Reformat component. Metadata on its input and output are identical. First two
fields (field1 and field2) are of string data type, the third (field3) is of integer data type.

1. We want to change the letters of field1 values to upper case while passing the other two fields
unchanged to the output.

2. We also want to distribute records according to the value of field3. Those records in which the
value of field3 is less than 5 should be sent to the output port 0, the others to the output port 1.

Examples	 of	 Mapping	

The first possibility is having the mapping for both ports and all fields defined inside the transform()
function of CTL template.

Example 55.6. Example of Mapping with Individual Fields

Note that the mappings will be performed for all records. In other words, even when the record will go to
the output port 1, also the mapping for output port 0 will be performed, and vice versa.

Moreover, mapping consists of individual fields, which may be complicated in case there are many fields in
a record. In the next examples, we will see how this can be solved in a better way.

function integer transform() {
 // mapping input port records to output port records
// each field is mapped separately
 $0.field1 = upperCase($0.field1);
 $0.field2 = $0.field2;
 $0.field3 = $0.field3;
 $1.field1 = upperCase($0.field1);
 $1.field2 = $0.field2;
 $1.field3 = $0.field3;
 // output port number returned
 if ($0.field3 < 5)
 return 0;
 else
 return 1;
 }
	

Note
As CTL allows to use any code after the mapping, here we have used the if statement with two
return statements after the mapping.

In CTL mapping may be in any place of the transformation code and may be followed by any
code!

As the second possibility, we also have the mapping for both ports and all fields defined inside the
transform() function of CTL template. But now there are wild cards used in the mapping. These passes

the records unchanged to the outputs and after this wildcard mapping the fields that should be changed are
specified.

Example 55.7. Example of Mapping with Wild Cards

Note that mappings will be performed for all records. In other words, even when the record will go to the
output port 1, the mapping for output port 0 will also be performed, and vice versa.

However, the mapping now uses wild cards first, which passes the records unchanged to the output. The
first field is now changed below the mapping with wild cards.

This is useful when there are many unchanged fields and a few that will be changed.

function integer transform() {
 // mapping input port records to output port records
 // wild cards for mapping unchanged records
 // transformed records mapped aditionally
 $0.* = $0.*;
 $0.field1 = upperCase($0.field1);
 $1.* = $0.*;
 $1.field1 = upperCase($0.field1);
 // return the number of output port
 if ($0.field3 < 5)
 return 0;
 else
 return 1;
}
	

Note
As CTL allows to use any code after the mapping, here we have used the if statement with two
return statements after the mapping.

In CTL mapping may be in any place of the transformation code and may be followed by any
code!

As the third possibility, we have the mapping for both ports and all fields defined outside the
transform() function of CTL template. Each output port has its own mapping.

Wild cards are also used here.

The mapping that is defined in separate functions for each output port allows the following improvements:

• Mapping is performed only for the respective output port! In other words, there is no need to map
record to the port 1 when it will go to the port 0, and vice versa.

Example 55.8. Example of Mapping with Wild Cards in Separate User-Defined Functions

Moreover, mapping uses wild cards at first, which passes the records unchanged to the output, but the first
field is changed below the mapping with wild card. This useful when there are many unchanged fields and
a few that will be changed.

 // mapping input port records to output port records //
inside separate functions // wild cards for mapping unchanged records
// transformed records mapped aditionally function void mapToPort0 () {
$0.* = $0.*; $0.field1 = upperCase($0.field1); } function void
mapToPort1 () { $1.* = $0.*; $1.field1 =
upperCase($0.field1); } // use mapping functions for all ports in the
if statement function integer transform() { if ($0.field3 < 5) {
mapToPort0(); return 0; } else {
mapToPort1(); return 1; } }

Parameters	

The parameters can be used in Clover transformation language in the following way:
${nameOfTheParameter}. If you want such a parameter to be considered a string data type, you must
surround it by single or double quotes like this: '${nameOfTheParameter}' or
"${nameOfTheParameter}".

Important

1. Remember that escape sequences are always resolved as soon as they are assigned to
parameters. For this reason, if you want that they are not resolved, type double
backslashes in these strings instead of single ones.

2. Remember also that you can get the values of environment variables using parameters. To
learn how to do it, see Environment Variables.

Functions	 Reference	

Clover transformation language has at its disposal a set of functions you can use. We describe them here.

All functions can be grouped into following categories:

• Conversion Functions
• Date Functions
• Mathematical Functions
• String Functions
• Container Functions
• Record functions (dynamic field access)
• Miscellaneous Functions
• Lookup Table Functions
• Sequence Functions

Built-in functions

• substring(upperCase(getAplhanumericChars($0.field1))1,3)
• $0.field1.getAlphanumericChars().upperCase().substring(1,3)

The two expressions above are equivalent. The second option with the first argument preceding the
function itself is sometimes referred to as object notation. Do not forget to use the
"$port.field.function()" syntax. Thus, arg.substring(1,3) is equal to
substring(arg,1,3).

You can also declare your own function with a set of arguments of any data type, ex.:

function integer myFunction(integer arg1, string arg2, boolean
arg3) { <function body> }

User-defined functions

• myFunction($0.integerField,$0.stringField,$0.booleanField)
• $0.integerField.myFunction($0.stringField,$0.booleanField)

Warning
Remember that the object notation (<first argument>.function(<other arguments>) cannot be used
in Miscellaneous functions. See Miscellaneous Functions.

Important
Remember that if you set the Null value property in metadata for any string data field to any
non-empty string, any function that accept string data field as an argument and throws NPE
when applied on null (e.g., length()), it will throw NPE when applied on such specific string.

For example, if field1 has Null value property set to "<null>", length($0.field1)
will fail on the records in which the value of field1 is "<null>" and it will be 0 for empty
field.

See Null value for detailed information.

Conversion	 Functions	

Sometimes you need to convert values from one data type to another.

In the functions that convert one data type to another, sometimes a format pattern of a date or a number
must be defined. Also, locale can have an influence to their formatting.

• For detailed information about date formatting and/or parsing see Data and Time Format. What?
(where are these?)

• For detailed information about formatting and/or parsing of any numeric data type see Numeric
Format.

• For detailed information about locale see Locale.

Note
Remember that numeric and date formats are displayed using system value Locale or Locale

specified in the defaultProperties file, unless other Locale is explicitly specified.

Here we provide the list of these functions:

• byte base64byte(string arg);

The base64byte(string) function takes one string argument in base64 representation and
converts it to an array of bytes. Its counterpart is the byte2base64(byte) function.

• string bits2str(byte arg);

The bits2str(byte) function takes an array of bytes and converts it to a string consisting of
two characters: "0" or "1". Each byte is represented by eight characters ("0" or "1"). For each
byte, the lowest bit is at the beginning of these eight characters. The counterpart is the
str2bits(string) function.

• integer bool2num(boolean arg);

The bool2num(boolean) function takes one boolean argument and converts it to either
integer 1 (if the argument is true) or integer 0 (if the argument is false). Its counterpart is the
num2bool(<numeric type>) function.

• string byte2base64(byte arg);

The byte2base64(byte) function takes an array of bytes and converts it to a string in
base64 representation. Its counterpart is the base64byte(string) function.

• string byte2hex(byte arg);

The byte2hex(byte) function takes an array of bytes and converts it to a string in
hexadecimal representation. Its counterpart is the hex2byte(string) function.

• string byte2str(byte payload, string charset);

Returns bytes converted to string using a given charset.

• long date2long(date arg);

The date2long(date) function takes one date argument and converts it to a long type. Its
value is equal to the number of milliseconds elapsed from January 1, 1970, 00:00:00
GMT to the date specified as the argument. Its counterpart is the long2date(long) function.

• integer date2num(date arg, unit timeunit);

The date2num(date, unit) function accepts two arguments: the first is date and the other is
any time unit. The unit can be one of the following: year, month, week, day, hour, minute,
second, millisec. The unit must be specified as a constant. It can neither be received through
an edge nor set as variable. The function takes these two arguments and converts them to an
integer using system locale. If the time unit is contained in the date, it is returned as an integer

number. If it is not contained, the function returns 0. Remember that months are numbered starting
from 1. Thus, date2num(2008-06-12, month) returns 6. And date2num(2008-06-
12, hour) returns 0.

• integer date2num(date arg, unit timeunit, string locale);

The date2num(date, unit, string) function accepts three arguments: the first is date,
the second is any time unit, the third is a locale. The unit can be one of the following: year,
month, week, day, hour, minute, second, millisec. The unit must be specified as a
constant. It can neither be received through an edge nor set as variable. The function takes these
two arguments and converts them to an integer using the specified locale. If the time unit is
contained in the date, it is returned as an integer number. If it is not contained, the function returns
0. Remember that months are numbered starting from 1. Thus, date2num(2008-06-12,
month) returns 6. And date2num(2008-06-12, hour) returns 0.

• string date2str(date arg, string pattern);

The date2str(date, string) function accepts two arguments: date and string. The
function takes them and converts the date according to the pattern specified as the second
argument. Thus, date2str(2008-06-12, "dd.MM.yyyy") returns the following string:
"12.6.2008". Its counterpart is the str2date(string, string) function.

• string date2str(date arg, string pattern, string locale);

Converts the date field type into a date of the string data type according to the pattern
(describing the date and time format) and locale (defining what date format symbols should be
used). Thus, date2str(2009/01/04,"yyyy-MMM-d","fr.CA") returns 2009-
janv.-4. See Locale for more info about locale settings.

• number decimal2double(decimal arg);

The decimal2double(decimal) function takes one argument of decimal data type and
converts it to a double value.

The conversion is narrowing. And, if a decimal value cannot be converted into a double (as
the ranges of double data type do not cover all decimal values), the function throws
exception. Thus, decimal2double(92378352147483647.23) returns
9.2378352147483648E16.

On the other hand, any double can be converted into a decimal. Both Length and Scale of a
decimal can be adjusted for it.

• integer decimal2integer(decimal arg);

The decimal2integer(decimal) function takes one argument of decimal data type and
converts it to an integer.

The conversion is narrowing. And, if a decimal value cannot be converted into an integer (as
the range of integer data type does not cover the range of decimal values), the function
throws exception. Thus, decimal2integer(352147483647.23) throws exception,
whereas decimal2integer(25.95) returns 25.

On the other hand, any integer can be converted into a decimal without loss of precision.
Length of a decimal can be adjusted for it.

• long decimal2long(decimal arg);

The decimal2long(decimal) function takes one argument of decimal data type and
converts it to a long value.

The conversion is narrowing. And, if a decimal value cannot be converted into a long (as the
range of long data type does not cover all decimal values), the function throws exception.
Thus, decimal2long(9759223372036854775807.25) throws exception, whereas
decimal2long(72036854775807.79) returns 72036854775807.

On the other hand, any long can be converted into a decimal without loss of precision. Length
of a decimal can be adjusted for it.

• integer double2integer(number arg);

The double2integer(number) function takes one argument of double data type and
converts it to an integer.

The conversion is narrowing. And, if a double value cannot be converted into an integer (as
the range of double data type does not cover all integer values), the function throws
exception. Thus, double2integer(352147483647.1) throws exception, whereas
double2integer(25.757197) returns 25.

On the other hand, any integer can be converted into a double without loss of precision.

• long double2long(number arg);

The double2long(number) function takes one argument of double data type and converts it
to a long.

The conversion is narrowing. And, if a double value cannot be converted into a long (as the
range of double data type does not cover all long values), the function throws exception. Thus,
double2long(1.3759739E23) throws exception, whereas double2long(25.8579)
returns 25.

On the other hand, any long can always be converted into a double, however, user should take
into account that loss of precision may occur.

• byte hex2byte(string arg);

The hex2byte(string) function takes one string argument in hexadecimal representation
and converts it to an array of bytes. Its counterpart is the byte2hex(byte) function.

• string json2xml(string arg);

The json2xml(string) function takes one string argument that is JSON formatted and
converts it to an XML formatted string. Its counterpart is the xml2json(string) function.

• date long2date(long arg);

The long2date(long) function takes one long argument and converts it to a date. It adds the
argument number of milliseconds to January 1, 1970, 00:00:00 GMT and returns the
result as a date. Its counterpart is the date2long(date) function.

• integer long2integer(long arg);

The long2integer(decimal) function takes one argument of long data type and converts it
to an integer value. The conversion is successful only if it is possible without any loss of
information, otherwise the function throws exception. Thus,
long2integer(352147483647) throws exception, whereas long2integer(25) returns
25.

On the other hand, any integer value can be converted into a long number without loss of
precision.

• byte long2packDecimal(long arg);

The long2packDecimal(long) function takes one argument of long data type and returns its
value in the representation of packed decimal number. It is the counterpart of the
packDecimal2long(byte) function.

• byte md5(byte arg);

The md5(byte) function accepts one argument consisting of an array of bytes. It takes this
argument and calculates its MD5 hash value.

• byte md5(string arg);

The md5(string) function accepts one argument of string data type. It takes this argument and
calculates its MD5 hash value.

• boolean num2bool(<numeric type> arg);

The num2bool(<numeric type>) function takes one argument of any numeric data type
(integer, long, number, or decimal) and returns boolean false for 0 and true for any
other value.

• string num2str(<numeric type> arg);

The num2str(<numeric type>) function takes one argument of any numeric data type
(integer, long, number, or decimal) and converts it to a string in decimal representation.
Locale is system value. Thus, num2str(20.52) returns "20.52".

• string num2str(<numeric type> arg, integer radix);

The num2str(<numeric type>,integer) function accepts two arguments: the first is of
any of three numeric data types (integer, long, number) and the second is integer. It takes
these two arguments and converts the first to its string representation in the radix based numeric
system. Thus, num2str(31, 16) returns "1F". Locale is system value.

For both integer and long data types, any integer number can be used as radix. For double
(number) only 10 or 16 can be used as radix.

• string num2str(<numeric type> arg, string format);

The num2str(<numeric type>, string) function accepts two arguments: the first is of
any numeric data type (integer, long, number, or decimal) and the second is string. It
takes these two arguments and converts the first to a string in decimal representation using the
format specified as the second argument. Locale has system value.

• string num2str(<numeric type> arg, string format, string locale);

The num2str(<numeric type>, string, string) function accepts three arguments:
the first is of any numeric data type (integer, long, number, or decimal) and two are
strings. It takes these arguments and converts the first to its string representation using the format
specified as the second argument and the locale specified as the third argument.

• long packDecimal2long(byte arg);

The packDecimal2long(byte) function takes one argument of an array of bytes whose
meaning is the packed decimal representation of a long number. It returns its value as long data
type. It is the counterpart of the long2packDecimal(long) function.

• byte sha(byte arg);

The sha(byte) function accepts one argument consisting of an array of bytes. It takes this
argument and calculates its SHA hash value.

• byte sha(string arg);

The sha(string) function accepts one argument of string data type. It takes this argument and
calculates its SHA hash value.

• byte str2bits(string arg);

The str2bits(string) function takes one string argument and converts it to an array of
bytes. Its counterpart is the bits2str(byte) function. The string consists of the following
characters: Each of them can be either "1" or it can be any other character. In the string, each
character "1" is converted to the bit 1, all other characters (not only "0", but also "a", "z",
"/", etc.) are converted to the bit 0. If the number of characters in the string is not an integral
multiple of eight, the string is completed by "0" characters from the right. Then, the string is
converted to an array of bytes as if the number of its characters were integral multiple of eight.

The first character represents the lowest bit.

• boolean str2bool(string arg);

The str2bool(string) function takes one string argument and converts it to the
corresponding boolean value. The string can be one of the following: "TRUE", "true", "T",
"t", "YES", "yes", "Y", "y", "1", "FALSE", "false", "F", "f", "NO", "no", "N",
"n", "0". The strings are converted to boolean true or boolean false.

• string str2byte(string payload, string charset);

Returns a string converted from input bytes using a given charset encoder.

• date str2date(string arg, string pattern);

The str2date(string, string) function accepts two string arguments. It takes them and
converts the first string to the date according to the pattern specified as the second argument.
The pattern must correspond to the structure of the first argument. Thus,
str2date("12.6.2008", "dd.MM.yyyy") returns the following date: 2008-06-12.

• date str2date(string arg, string pattern, string locale);

The str2date(string, string, string) function accepts three string arguments and
one boolean. It takes the arguments and converts the first string to the date according to the
pattern and locale specified as the second and the third argument, respectively. The
pattern must correspond to the structure of the first argument. Thus,
str2date("12.6.2008", "dd.MM.yyyy",cs.CZ) returns the following date: 2008-
06-12 . The third argument defines the locale for the date.

• decimal str2decimal(string arg);

The str2decimal(string) function takes one string argument and converts it to the
corresponding decimal value.

• decimal str2decimal(string arg, string format);

The str2decimal(string, string) function takes the first string argument and converts
it to the corresponding decimal value according to the format specified as the second argument.
Locale has system value.

• decimal str2decimal(string arg, string format, string locale);

The str2decimal(string, string, string) function takes the first string argument
and converts it to the corresponding decimal value according to the format specified as the second
argument and the locale specified as the third argument.

• number str2double(string arg);

The str2double(string) function takes one string argument and converts it to the
corresponding double value.

• number str2double(string arg, string format);

The str2double(string, string) function takes the first string argument and converts it
to the corresponding double value according to the format specified as the second argument.
Locale has system value.

• number str2double(string arg, string format, string locale);

The str2decimal(string, string, string) function takes the first string argument
and converts it to the corresponding double value according to the format specified as the second
argument and the locale specified as the third argument.

• integer str2integer(string arg);

The str2integer(string) function takes one string argument and converts it to the
corresponding integer value.

• integer str2integer(string arg, integer radix);

The str2integer(string, integer) function accepts two arguments: string and integer.
It takes the first argument as if it were expressed in the radix based numeric system
representation and returns its corresponding integer decimal value.

• integer str2integer(string arg, string format);

The str2integer(string, string) function takes the first string argument as decimal
string representation of an integer number corresponding to the format specified as the second
argument and the system locale and converts it to the corresponding integer value.

• integer str2integer(string arg, string format, string locale);

The str2integer(string, string, string) function takes the first string argument
as decimal string representation of an integer number corresponding to the format specified as the
second argument and the locale specified as the third argument and converts it to the
corresponding integer value.

• long str2long(string arg, integer radix);

The str2long(string, integer) function accepts two arguments: string and integer. It
takes the first argument as if it were expressed in the radix based numeric system representation
and returns its corresponding long decimal value.

• long str2long(string arg, string format);

The str2long(string, string) function takes the first string argument as decimal string
representation of a long number corresponding to the format specified as the second argument and
the system locale and converts it to the corresponding long value.

• long str2long(string arg, string format, string locale);

The str2long(string, string, string) function takes the first string argument as
decimal string representation of a long number corresponding to the format specified as the second
argument and the locale specified as the third argument and converts it to the corresponding long
value.

• string toString(<numeric|list|map type> arg);

The toString(<numeric|list|map type>) function takes one argument and converts it
to its string representation. It accepts any numeric data type, list of any data type, as well as map
of any data types.

• string xml2json(string arg);

The xml2josn(string) function takes one string argument that is XML formatted and
converts it to a JSON formatted string. Its counterpart is the json2xml(string) function.

Date	 Functions	

When you work with dates, you may use the functions that process dates.

In these functions, sometimes a format pattern of a date or any number must be defined. Locale can also
have an influence on their formatting.

• For detailed information about date formatting and/or parsing see Data and Time Format. What?
(where?)

• For detailed information about locale see Locale.

Note
Remember that numeric and date formats are displayed using system value Locale or Locale
specified in the defaultProperties file, unless another Locale is explicitly specified.

Here we provide the list of the functions:

• date dateAdd(date arg, long amount, unit timeunit);

The dateAdd(date, long, unit) function accepts three arguments: the first is date, the
second is of long data type and the last is any time unit. The unit can be one of the following:
year, month, week, day, hour, minute, second, millisec. The unit must be specified
as a constant. It can neither be received through an edge nor set as variable. The function takes the
first argument, adds the amount of time units to it and returns the result as a date. The amount
and time units are specified as the second and third arguments, respectively.

• long dateDiff(date later, date earlier, unit timeunit);

The dateDiff(date, date, unit) function accepts three arguments: two dates and one
time unit. It takes these arguments and subtracts the second argument from the first argument.
The unit can be one of the following: year, month, week, day, hour, minute, second,
millisec. The unit must be specified as a constant. It can be neither received through an edge
nor set as variable. The function returns the resulting time difference expressed in time units
specified as the third argument. Thus, the difference of two dates is expressed in defined time
units. The result is expressed as an integer number. Thus, dateDiff(2008-06-18, 2001-
02-03, year) returns 7. But, dateDiff(2001-02-03, 2008-06-18, year) returns
-7!

• date extractDate(date arg);

The extractDate(date) function takes one date argument and returns only the information
containing year, month, and day values. The function's argument is not modified by the return
value.

• date extractTime(date arg);

The extractTime(date) function takes one date argument and returns only the information
containing hours, minutes, seconds, and milliseconds. The function's argument is not modified by
the return value.

• date randomDate(date startDate, date endDate);

The randomDate(date, date) function accepts two date arguments and returns a random
date between startDate and endDate. These resulting dates are generated at random for
different records and different fields. They can be different for both records and fields. The return
value can also be startDate or endDate. However, it cannot be the date before startDate
nor after endDate. Remember that dates represent 0 hours and 0 minutes and 0 seconds and 0
milliseconds of the specified day, thus, if you want that endDate could be returned, enter the
next date as endDate. As locale, system value is used. The default format is specified in the
defaultProperties file.

• date randomDate(long startDate, long endDate);

The randomDate(long, long) function accepts two arguments of long data type - each of
them represents a date - and returns a random date between startDate and endDate. These
resulting dates are generated at random for different records and different fields. They can be
different for both records and fields. The return value can also be startDate or endDate.
However, it cannot be the date before startDate nor after endDate. Remember that dates
represent 0 hours and 0 minutes and 0 seconds and 0 milliseconds of the specified day, thus, if you
want that endDate could be returned, enter the next date as endDate. As locale, system
value is used. The default format is specified in the defaultProperties file.

• date randomDate(string startDate, string endDate, string format);

The randomDate(string, string, string) function accepts three stringarguments.
Two first represent dates, the third represents a format. The function returns a random date
between startDate and endDate corresponding to the format specified by the third
argument. These resulting dates are generated at random for different records and different fields.
They can be different for both records and fields. The return value can also be startDate or
endDate. However, it cannot be the date before startDate nor after endDate. Remember
that dates represent 0 hours and 0 minutes and 0 seconds and 0 milliseconds of the specified day,
thus, if you want that endDate could be returned, enter the next date as endDate. As locale,
system value is used.

• date randomDate(string startDate, string endDate, string format, string locale);

The randomDate(string, string, string, string) function accepts four string
arguments. The first and the second argument represent dates. The third is a format and the fourt is
locale. The function returns a random date between startDate and endDate. These resulting
dates are generated at random for different records and different fields. They can be different for
both records and fields. The return value can also be startDate or endDate corresponding to
the format and the locale specified by the third and the fourth argument, respectively.
However, it cannot be the date before startDate nor after endDate. Remember that dates
represent 0 hours and 0 minutes and 0 seconds and 0 milliseconds of the specified day, thus, if you
want that endDate could be returned, enter the next date as endDate.

• date today();

The today() function accepts no argument and returns current date and time.

• date zeroDate();

The zeroDate() function accepts no argument and returns 1.1.1970.

Note
The following two functions are deprecated. Their return value modifies the argument at the same
time.

• date trunc(date arg);

The trunc(date) function takes one date argument and returns the date with the same
year, month and day, but hour, minute, second and millisecond are set to 0 values.

• date truncDate(date arg);

The truncDate(date) function takes one date argument and returns the date with the
same hour, minute, second and millisecond, but year, month and day are set to 0 values.
The 0 date is 0001-01-01.

Mathematical	 Functions	

You may also want to use some mathematical functions:

• <numeric type> abs(<numeric type> arg);

The abs(<numeric type>) function takes one argument of any numeric data type
(integer, long, number, or decimal) and returns its absolute value in the same data type.

• integer bitAnd(integer arg1, integer arg2);

The bitAnd(integer, integer) function accepts two arguments of integer data type. It
takes them and returns the number corresponding to the bitwise and. (For example,
bitAnd(11,7) returns 3.) As decimal 11 can be expressed as bitwise 1011, decimal 7 can be
expressed as 111, thus the result is 11 what corresponds to decimal 3.

• long bitAnd(long arg1, long arg2);

The bitAnd(long, long) function accepts two arguments of long data type. It takes them
and returns the number corresponding to the bitwise and. (For example, bitAnd(11,7) returns
3.) As decimal 11 can be expressed as bitwise 1011, decimal 7 can be expressed as 111, thus
the result is 11 what corresponds to decimal 3.

• boolean bitIsSet(integer arg, integer Index);

The bitIsSet(integer, integer) function accepts two arguments of integer data type. It
takes them, determines the value of the bit of the first argument located on the Index and returns
true or false, if the bit is 1 or 0, respectively. (For example, bitIsSet(11,3) returns
true.) As decimal 11 can be expressed as bitwise 1011, the bit whose index is 3 (the fourth
from the right) is 1, thus the result is true. And bitIsSet(11,2) would return false.

• boolean bitIsSet(long arg, integer Index);

The bitIsSet(long, integer) function accepts one argument of long data type and one
integer. It takes these arguments, determines the value of the bit of the first argument located on
the Index and returns true or false, if the bit is 1 or 0, respectively. (For example,
bitIsSet(11,3) returns true.) As decimal 11 can be expressed as bitwise 1011, the bit
whose index is 3 (the fourth from the right) is 1, thus the result is true. And
bitIsSet(11,2) would return false.

• integer bitLShift(integer arg, integer Shift);

The bitLShift(integer, integer) function accepts two arguments of integer data type.
It takes them and returns the number corresponding to the original number with some bits added
(Shift number of bits on the left side are added and set to 0.) (For example,
bitLShift(11,2) returns 44.) As decimal 11 can be expressed as bitwise 1011, thus the two
bits on the right side (10) are added and the result is 101100 which corresponds to decimal 44.

• long bitLShift(long arg, long Shift);

The bitLShift(long, long) function accepts two arguments of long data type. It takes
them and returns the number corresponding to the original number with some bits added (Shift
number of bits on the left side are added and set to 0.) (For example, bitLShift(11,2)
returns 44.) As decimal 11 can be expressed as bitwise 1011, thus the two bits on the right side
(10) are added and the result is 101100 which corresponds to decimal 44.

• integer bitNegate(integer arg);

The bitNegate(integer) function accepts one argument of integer data type. It returns the
number corresponding to its bitwise inverted number. (For example, bitNegate(11)
returns -12.) The function inverts all bits in an argument.

• long bitNegate(long arg);

The bitNegate(long) function accepts one argument of long data type. It returns the number
corresponding to its bitwise inverted number. (For example, bitNegate(11) returns -
12.) The function inverts all bits in an argument.

• integer bitOr(integer arg1, integer arg2);

The bitOr(integer, integer) function accepts two arguments of integer data type. It
takes them and returns the number corresponding to the bitwise or. (For example,
bitOr(11,7) returns 15.) As decimal 11 can be expressed as bitwise 1011, decimal 7 can be
expressed as 111, thus the result is 1111 what corresponds to decimal 15.

• long bitOr(long arg1, long arg2);

The bitOr(long, long) function accepts two arguments of long data type. It takes them and
returns the number corresponding to the bitwise or. (For example, bitOr(11,7) returns 15.)
As decimal 11 can be expressed as bitwise 1011, decimal 7 can be expressed as 111, thus the
result is 1111 what corresponds to decimal 15.

• integer bitRShift(integer arg, integer Shift);

The bitRShift(integer, integer) function accepts two arguments of integer data type.
It takes them and returns the number corresponding to the original number with some bits
removed (Shift number of bits on the right side are removed.) (For example,
bitRShift(11,2) returns 2.) As decimal 11 can be expressed as bitwise 1011, thus the two
bits on the right side are removed and the result is 10 what corresponds to decimal 2.

• long bitRShift(long arg, long Shift);

The bitRShift(long, long) function accepts two arguments of long data type. It takes
them and returns the number corresponding to the original number with some bits removed
(Shift number of bits on the right side are removed.) (For example, bitRShift(11,2)
returns 2.) As decimal 11 can be expressed as bitwise 1011, thus the two bits on the right side
are removed and the result is 10 what corresponds to decimal 2.

• integer bitSet(integer arg1, integer Index, boolean SetBitTo1);

The bitSet(integer, integer, boolean) function accepts three arguments. The first
two are of integer data type and the third is boolean. It takes them, sets the value of the bit of the
first argument located on the Index specified as the second argument to 1 or 0, if the third
argument is true or false, respectively, and returns the result as an integer. (For example,
bitSet(11,3,false) returns 3.) As decimal 11 can be expressed as bitwise 1011, the bit
whose index is 3 (the fourth from the right) is set to 0, thus the result is 11 what corresponds to
decimal 3. And bitSet(11,2,true) would return 1111 what corresponds to decimal 15.

• long bitSet(long arg1, integer Index, boolean SetBitTo1);

The bitSet(long, integer, boolean) function accepts three arguments. The first is
long, the second is integer, and the third is boolean. It takes them, sets the value of the bit of the
first argument located on the Index specified as the second argument to 1 or 0, if the third
argument is true or false, respectively, and returns the result as an integer. (For example,
bitSet(11,3,false) returns 3.) As decimal 11 can be expressed as bitwise 1011, the bit
whose index is 3 (the fourth from the right) is set to 0, thus the result is 11 what corresponds to
decimal 3. And bitSet(11,2,true) would return 1111 what corresponds to decimal 15.

• integer bitXor(integer arg, integer arg);

The bitXor(integer, integer) function accepts two arguments of integer data type. It
takes them and returns the number corresponding to the bitwise exclusive or. (For example,
bitXor(11,7) returns 12.) As decimal 11 can be expressed as bitwise 1011, decimal 7 can
be expressed as 111, thus the result is 1100 what corresponds to decimal 15.

• long bitXor(long arg, long arg);

The bitXor(long, long) function accepts two arguments of long data type. It takes them
and returns the number corresponding to the bitwise exclusive or. (For example,
bitXor(11,7) returns 12.) As decimal 11 can be expressed as bitwise 1011, decimal 7 can
be expressed as 111, thus the result is 1100 what corresponds to decimal 15.

• number ceil(decimal arg);

The ceil(decimal) function takes one argument of decimal data type and returns the smallest
(closest to negative infinity) double value that is greater than or equal to the argument and is equal
to a mathematical integer.

• number ceil(number arg);

The ceil(number) function takes one argument of double data type and returns the smallest
(closest to negative infinity) double value that is greater than or equal to the argument and is equal
to a mathematical integer.

• number e();

The e() function accepts no argument and returns the Euler number.

• number exp(<numeric type> arg);

The exp(<numeric type>) function takes one argument of any numeric data type
(integer, long, number, or decimal) and returns the result of the exponential function of
this argument.

• number floor(decimal arg);

The floor(decimal) function takes one argument of decimal data type and returns the largest
(closest to positive infinity) double value that is less than or equal to the argument and is equal to a
mathematical integer.

• number floor(number arg);

The floor(number) function takes one argument of double data type and returns the largest
(closest to positive infinity) double value that is less than or equal to the argument and is equal to a
mathematical integer.

• void setRandomSeed(long arg);

The setRandomSeed(long) takes one long argument and generates the seed for all functions
that generate values at random.

This function should be used in the preExecute() function or method.

In such a case, all values generated at random do not change on different runs of the graph, they
even remain the same after the graph is resetted.

• number log(<numeric type> arg);

The log(<numeric type>) takes one argument of any numeric data type (integer, long,
number, or decimal) and returns the result of the natural logarithm of this argument.

• number log10(<numeric type> arg);

The log10(<numeric type>) function takes one argument of any numeric data type
(integer, long, number, or decimal) and returns the result of the logarithm of this
argument to the base 10.

• number pi();

The pi() function accepts no argument and returns the pi number.

• number pow(<numeric type> base, <numeric type> exp);

The pow(<numeric type>, <numeric type>) function takes two arguments of any
numeric data types (that do not need to be the same, integer, long, number, or decimal)
and returns the exponential function of the first argument as the exponent with the second as the
base.

• number random();

The random() function accepts no argument and returns a random positive double greater than
or equal to 0.0 and less than 1.0.

• boolean randomBoolean();

The randomBoolean() function accepts no argument and generates at random boolean values
true or false. If these values are sent to any numeric data type field, they are converted to their
numeric representation automatically (1 or 0, respectively).

• number randomGaussian();

The randomGaussian() function accepts no argument and generates at random both positive
and negative values of number data type in a Gaussian distribution.

• integer randomInteger();

The randomInteger() function accepts no argument and generates at random both positive
and negative integer values.

• integer randomInteger(integer Minimum, integer Maximum);

The randomInteger(integer, integer) function accepts two argument of integer data
types and returns a random integer value greater than or equal to Minimum and less than or equal
to Maximum.

• long randomLong();

The randomLong() function accepts no argument and generates at random both positive and
negative long values.

• long randomLong(long Minimum, long Maximum);

The randomLong(long, long) function accepts two argument of long data types and
returns a random long value greater than or equal to Minimum and less than or equal to
Maximum.

• long round(decimal arg);

The round(decimal) function takes one argument of decimal data type and returns the long
that is closest to this argument. Decimal is converted to number prior to the operation.

• long round(number arg);

The round(number) function takes one argument of number data type and returns the long that
is closest to this argument.

• number sqrt(<numeric type> arg);

The sqrt(mumerictype) function takes one argument of any numeric data type (integer,
long, number, or decimal) and returns the square root of this argument.

String	 Functions	

Some functions work with strings.

In the functions that work with strings, sometimes a format pattern of a date or any number must be
defined.

• For detailed information about date formatting and/or parsing see Data and Time Format. What?
(where)

• For detailed information about formatting and/or parsing of any numeric data type see Numeric
Format.

• For detailed information about locale see Locale.

Note
Remember that numeric and date formats are displayed using system value Locale or Locale
specified in the defaultProperties file, unless other Locale is explicitly specified.

Here we provide the list of the functions:

• string charAt(string arg, integer index);

The charAt(string, integer) function accepts two arguments: the first is string and the
second is integer. It takes the string and returns the character that is located at the position
specified by the index.

• string chop(string arg);

The chop(string) function accepts one string argument. The function takes this argument,
removes the line feed and the carriage return characters from the end of the string specified as the
argument and returns the new string without these characters.

• string chop(string arg1, string arg2);

The chop(string, string) function accepts two string arguments. It takes the first
argument, removes the string specified as the second argument from the end of the first argument
and returns the first string argument without the string specified as the second argument.

• string concat(string arg1, string ..., string argN);

The concat(string, ..., string) function accepts unlimited number of arguments of
string data type. It takes these arguments and returns their concatenation. You can also concatenate
these arguments using plus signs, but this function is faster for more than two arguments.

• integer countChar(string arg, string character);

The countChar(string, string) function accepts two arguments: the first is string and
the second is one character. It takes them and returns the number of occurrences of the character
specified as the second argument in the string specified as the first argument.

• string[] cut(string arg, integer[] indeces);

The cut(string, integer[]) function accepts two arguments: the first is string and the
second is list of integers. The function returns a list of strings. The number of elements of the list
specified as the second argument must be even. The integers in the list serve as position (each
number in the odd position) and length (each number in the even position). Substrings of the
specified length are taken from the string specified as the first argument starting from the specified
position (excluding the character at the specified position). The resulting substrings are returned as
list of strings. For example, cut("somestringasanexample",[2,3,1,5]) returns
["mes","omest"].

• integer editDistance(string arg1, string arg2);

The editDistance(string, string) function accepts two string arguments. These
strings will be compared to each other. The strength of comparison is 4 by default, the default
value of locale for comparison is the system value and the maximum difference is 3 by default.

The function returns the number of letters that should be changed to transform one of the two
arguments to the other. However, when the function is being executed, if it counts that the number
of letters that should be changed is at least the number specified as the maximum difference, the
execution terminates and the function returns maxDifference + 1 as the return value.

For more details, see another version of the editDistance() function below - the editDistance
(string, string, integer, string, integer) function.

• integer editDistance(string arg1, string arg2, string locale);

The editDistance(string, string, string) function accepts three arguments. The
first two are strings that will be compared to each other and the third (string) is the locale that will
be used for comparison. The default strength of comparison is 4. The maximum difference is 3 by
default.

The function returns the number of letters that should be changed to transform one of the first two
arguments to the other. However, when the function is being executed, if it counts that the number
of letters that should be changed is at least the number specified as the maximum difference, the
execution terminates and the function returns maxDifference + 1 as the return value.

For more details, see another version of the editDistance() function below - the editDistance
(string, string, integer, string, integer) function.

• integer editDistance(string arg1, string arg2, integer strength);

The editDistance(string, string, integer) function accepts three arguments. The
first two are strings that will be compared to each other and the third (integer) is the strength of
comparison. The default locale that will be used for comparison is the system value. The
maximum difference is 3 by default.

The function returns the number of letters that should be changed to transform one of the first two
arguments to the other. However, when the function is being executed, if it counts that the number
of letters that should be changed is at least the number specified as the maximum difference, the
execution terminates and the function returns maxDifference + 1 as the return value.

For more details, see another version of the editDistance() function below - the editDistance
(string, string, integer, string, integer) function.

• integer editDistance(string arg1, string arg2, integer strength, string locale);

The editDistance(string, string, integer, string) function accepts four
arguments. The first two are strings that will be compared to each other, the third (integer) is the
strength of comparison and the fourth (string) is the locale that will be used for comparison. The
maximum difference is 3 by default.

The function returns the number of letters that should be changed to transform one of the first two
arguments to the other. However, when the function is being executed, if it counts that the number
of letters that should be changed is at least the number specified as the maximum difference, the
execution terminates and the function returns maxDifference + 1 as the return value.

For more details, see another version of the editDistance() function below - the editDistance
(string, string, integer, string, integer) function.

• integer editDistance(string arg1, string arg2, string locale, integer maxDifference);

The editDistance(string, string, string, integer) function accepts four
arguments. The first two are strings that will be compared to each other, the third (string) is the
locale that will be used for comparison and the fourth (integer) is the maximum difference. The
strength of comparison is 4 by default.

The function returns the number of letters that should be changed to transform one of the first two
arguments to the other. However, when the function is being executed, if it counts that the number
of letters that should be changed is at least the number specified as the maximum difference, the
execution terminates and the function returns maxDifference + 1 as the return value.

For more details, see another version of the editDistance() function below - the editDistance
(string, string, integer, string, integer) function.

• integer editDistance(string arg1, string arg2, integer strength, integer maxDifference);

The editDistance(string, string, integer, integer) function accepts four
arguments. The first two are strings that will be compared to each other and the two others are
both integers. These are the strength of comparison (third argument) and the maximum difference
(fourth argument). The locale is the default system value.

The function returns the number of letters that should be changed to transform one of the first two
arguments to the other. However, when the function is being executed, if it counts that the number
of letters that should be changed is at least the number specified as the maximum difference, the
execution terminates and the function returns maxDifference + 1 as the return value.

For more details, see another version of the editDistance() function below - the editDistance
(string, string, integer, string, integer) function.

• integer editDistance(string arg1, string arg2, integer strength, string locale, integer
maxDifference);

The editDistance(string, string, integer, string, integer) function
accepts five arguments. The first two are strings, the three others are integer, string and integer,
respectively. The function takes the first two arguments and compares them to each other using
the other three arguments.

The third argument (integer number) specifies the strength of comparison. It can have any value
from 1 to 4.

If it is 4 (identical comparison), that means that only identical letters are considered equal. In case
of 3 (tertiary comparison), that means that upper and lower cases are considered equal. If it is 2
(secondary comparison), that means that letters with diacritical marks are considered equal. Last,
if the strength of comparison is 1 (primary comparison), that means that even the letters with some
specific signs are considered equal. In other versions of the editDistance() function where
this strength of comparison is not specified, the number 4 is used as the default strength (see
above).

The fourth argument is the string data type. It is the locale that serves for comparison. If no locale
is specified in other versions of the editDistance() function, its default value is the system
value (see above).

The fifth argument (integer number) means the number of letters that should be changed to
transform one of the first two arguments to the other. If another version of the
editDistance() function does not specify this maximum difference, the default maximum
difference is number 3 (see above).

The function returns the number of letters that should be changed to transform one of the first two
arguments to the other. However, when the function is being executed, if it counts that the number
of letters that should be changed is at least the number specified as the maximum difference, the
execution terminates and the function returns maxDifference + 1 as the return value.

Actually the function is implemented for the following locales: CA, CZ, ES, DA, DE, ET, FI, FR,
HR, HU, IS, IT, LT, LV, NL, NO, PL, PT, RO, SK, SL, SQ, SV, TR. These locales have one thing
in common: they all contain language-specific characters. A complete list of these characters can
be examined in CTL Appendix - List of National-specific Characters

• string escapeUrl(string arg);

The function escapes illegal characters within components of specified URL (see isUrl() CTL
function for the URL component description). Illegal characters must be escaped by a percent
character % symbol, followed by the two-digit hexadecimal representation (case-insensitive) of the
ISO-Latin code point for the character, e.g., %20 is the escaped encoding for the US-ASCII space
character.

• string[] find(string arg, string regex);

The find(string, string) function accepts two string arguments. The second one is a
regular expression. The function takes them and returns a list of substrings corresponding to the
regex pattern that are found in the string specified as the first argument.

• string getAlphanumericChars(string arg);

The getAlphanumericChars(string) function takes one string argument and returns only
letters and digits contained in the string argument in the order of their appearance in the string.
The other characters are removed.

• string getAlphanumericChars(string arg, boolean takeAlpha, boolean takeNumeric);

The getAlphanumericChars(string, boolean, boolean) function accepts three
arguments: one string and two booleans. It takes them and returns letters and/or digits if the
second and/or the third arguments, respectively, are set to true.

• string getFieldLabel(reference record, string arg);

The function returns a label of a field whose name is specified in arg. The fields are taken from
record.

• string getFieldLabel(reference record, integer arg);

The function returns a label of a field whose index is specified in arg. The fields are taken from
record.

• string getUrlHost(string arg);

The function parses out host name from specified URL (see isUrl() CTL function for the scheme).
If the hostname part is not present in the URL argument, an empty string is returned. If the URL is
not valid, null is returned.

• string getUrlPath(string arg);

The function parses out path from specified URL (see isUrl() CTL function for the scheme). If the
path part is not present in the URL argument, an empty string is returned. If the URL is not valid,
null is returned.

• integer getUrlPort(string arg);

The function parses out port number from specified URL (see isUrl() CTL function for the
scheme). If the port part is not present in the URL argument, -1 is returned. If the URL has invalid
syntax, -2 is returned.

• string getUrlProtocol(string arg);

The function parses out protocol name from specified URL (see isUrl() CTL function for the
scheme). If the protocol part is not present in the URL argument, an empty string is returned. If the
URL is not valid, null is returned.

• string getUrlQuery(string arg);

The function parses out query (parameters) from specified URL (see isUrl() CTL function for the
scheme). If the query part is not present in the URL argument, an empty string is returned. If the
URL syntax is invalid, null is returned.

• string getUrlUserInfo(string arg);

The function parses out username and password from specified URL (see isUrl() CTL function for
the scheme). If the userinfo part is not present in the URL argument, an empty string is returned. If
the URL syntax is invalid, null is returned.

• string getUrlRef(string arg);

The function parses out fragment after # character, also known as ref, reference or anchor, from
specified URL (see isUrl() CTL function for the scheme). If the fragment part is not present in the
URL argument, an empty string is returned. If the URL syntax is invalid, null is returned.

• integer indexOf(string arg, string substring);

The indexOf(string, string) function accepts two strings. It takes them and returns the
index of the first appearance of substring in the string specified as the first argument.

• integer indexOf(string arg, string substring, integer fromIndex);

The indexOf(string, string, integer) function accepts three arguments: two strings
and one integer. It takes them and returns the index of the first appearance of substring
counted from the character located at the position specified by the third argument.

• boolean isAscii(string arg);

The isAscii(string) function takes one string argument and returns a boolean value
depending on whether the string can be encoded as an ASCII string (true) or not (false).

• boolean isBlank(string arg);

The isBlank(string) function takes one string argument and returns a boolean value
depending on whether the string contains only white space characters (true) or not (false).

• boolean isDate(string arg, string pattern);

The isDate(string, string) function accepts two string arguments. It takes them,
compares the first argument with the second as a pattern and, if the first string can be converted to
a date which is valid within system value of locale, according to the specified pattern, the
function returns true. If it is not possible, it returns false.

(For more details, see another version of the isDate() function below - the
isDate(string, string, string, boolean) function.)

This function is a variant of the mentioned isDate(string, string, string) function
in which the default value of the third argument is set to system value.

• boolean isDate(string arg, string pattern, string locale);

The isDate(string, string, string) function accepts three string arguments. It takes
them, compares the first argument with the second as a pattern, use the third argument (locale)
and, if the first string can be converted to a date which is valid within specified locale,
according to the specified pattern, the function returns true. If it is not possible, it returns false.

(For more details, see another version of the isDate() function below - the
isDate(string, string, string, boolean) function.)

• boolean isInteger(string arg);

The isInteger(string) function takes one string argument and returns a boolean value
depending on whether the string can be converted to an integer number (true) or not (false).

• boolean isLong(string arg);

The isLong(string) function takes one string argument and returns a boolean value
depending on whether the string can be converted to a long number (true) or not (false).

• boolean isNumber(string arg);

The isNumber(string) function takes one string argument and returns a boolean value
depending on whether the string can be converted to a double (true) or not (false).

• boolean isUrl(string arg);

The function checks whether specified string is a valid URL of the following syntax

foo://username:passw@host.com:8042/there/index.dtb?type=animal;na
me=cat#nose _/ ____________/ ______/ __/______________/
__________________/ __/ | | | |
| | | protocol userinfo host
port path query ref

• string join(string delimiter, <element type>[] arg);

The join(string, <element type>[]) function accepts two arguments. The first is
string, the second is a list of elements of any data type. The elements that are not strings are
converted to their string representation and put together with the first argument as delimiter.

• string join(string delimiter, map[<type of key>,<type of value>] arg);

The join(string, map[<type of key>,<type of value>]) function accepts two
arguments. The first is string, the second is a map of any data types. The map elements are
displayed as key=value strings. These are put together with the first argument as delimiter.

• string left(string arg, integer length);

The left(string, integer) function accepts two arguments: the first is string and the
second is integer. It takes them and returns the substring of the length specified as the second

argument counted from the start of the string specified as the first argument. If the input string is
shorter than the length parameter, an exception is thrown and the graph fails. To avoid such
failure, use the left(string, integer, boolean) function described below.

• string left(string arg, integer length, boolean spacePad);

The function returns prefix of the specified length. If the input string is longer or equally long as
the length parameter, the function behaves the same way as the left(string, integer)
function. There is different behaviour if the input string is shorter than the specified length. If the
3th argument is true, the right side of the result is padded with blank spaces so that the result has
specified length beeing left justified. Whereas if false, the input string is returned as the result
with no space added.

• integer length(structuredtype arg);

The length(structuredtype) function accepts a structured data type as its argument:
string, <element type>[], map[<type of key>,<type of value>] or
record. It takes the argument and returns a number of elements forming the structured data type.

• string lowerCase(string arg);

The lowerCase(string) function takes one string argument and returns another string with
cases converted to lower cases only.

• boolean matches(string arg, string regex);

The matches(string, string) function takes two string arguments. The second argument
is some regular expression. If the first argument can be expressed with such regular expression,
the function returns true, otherwise it is false.

• string metaphone(string arg, integer maxLength);

The metaphone(string, integer) function accepts one string argument and one integer
meaning the maximum length. The function takes these arguments and returns the metaphone
code of the first argument of the specified maximum length. The default maximum length is 4.

• string NYSIIS(string arg);

The NYSIIS(string) function takes one string argument and returns the New York State
Identification and Intelligence System Phonetic Code of the argument.

• string randomString(integer minLength, integer maxLength);

The randomString(integer, integer) function takes two integer arguments and
returns strings composed of lowercase letters whose length varies between minLength and
maxLength. These resulting strings are generated at random for records and fields. They can be
different for both different records and different fields. Their length can also be equal to
minLength or maxLength, however, they can be neither shorter than minLength nor longer
than maxLength.

• string randomUUID();

Generates a random but undoubtedly unique string identifier. The generated string has this format:

hhhhhhhh-hhhh-hhhh-hhhh-hhhhhhhhhhhh

where h belongs to [0-9a-f]. In other words, you generate a hexadecimal code of a random
128bit number.

Example generated string: cee188a3-aa67-4a68-bcd2-52f3ec0329e6

• string removeBlankSpace(string arg);

The removeBlankSpace(string) function takes one string argument and returns another
string with white spaces removed.

• string removeDiacritic(string arg);

The removeDiacritic(string) function takes one string argument and returns another
string with diacritical marks removed.

• string removeNonAscii(string arg);

The removeNonAscii(string) function takes one string argument and returns another
string with non-ascii characters removed.

• string removeNonPrintable(string arg);

The removeNonPrintable(string) function takes one string argument and returns another
string with non-printable characters removed.

• string replace(string arg, string regex, string replacement);

The replace(string, string, string) function takes three string arguments - a string,
a regular expression, and a replacement - and replaces all regex matches inside the string with the
replacement string you specified. All parts of the string that match the regex are replaced. You can
also reference the matched text using a backreference in the replacement string. A backreference
to the entire match is indicated as $0. If there are capturing parentheses, you can reference
specifics groups as $1, $2, $3, etc.

replace("Hello","[Ll]","t") returns "Hetto"

replace("Hello", "e(l+)", "a$1") returns "Hallo"

Important - please beware of similar syntax of $0, $1 etc. While used inside the replacement string
it refers to matching regular expression parenthesis (in order). If used outside a string, it means a
reference to an input field. See other example:

replace("Hello", "e(l+)", $0.name) returns HJohno if input field "name" on port
0 contains the name "John".

You can also use modifier in the start of the regular expression: (?i) for case-insensitive search,
(?m) for multiline mode or (?s) for "dotall" mode where a dot (".") matches even a newline
character

replace("Hello", "(?i)L", "t") will produce Hetto while replace("Hello",
"L", "t") will just produce Hello

• string right(string arg, integer length);

The right(string, integer) function accepts two arguments: the first is string and the
second is integer. It takes them and returns the substring of the length specified as the second
argument counted from the end of the string specified as the first argument. If the input string is
shorter than the length parameter, an exception is thrown and the graph fails. To avoid such
failure, use the right(string, integer, boolean) function described below.

• string right(string arg, integer length, boolean spacePad);

The function returns suffix of the specified length. If the input string is longer or equally long as
the length parameter, the function behaves the same way as the right(string,
integer) function. There is different behaviour if the input string is shorter than the specified
length. If the 3th argument is true, the left side of the result is padded with blank spaces so that
the result has specified length beeing right justified. Whereas if false, the input string is
returned as the result with no space added.

• string soundex(string arg);

The soundex(string) function takes one string argument and converts the string to another.
The resulting string consists of the first letter of the string specified as the argument and three
digits. The three digits are based on the consonants contained in the string when similar numbers
correspond to similarly sounding consonants. Thus, soundex("word") returns "w600".

• string[] split(string arg, string regex);

The split(string, string) function accepts two string arguments. The second is some
regular expression. It is searched in the first string argument and if it is found, the string is split
into the parts located between the characters or substrings of such a regular expression. The
resulting parts of the string are returned as a list of strings. Thus, split("abcdefg",
"[ce]") returns ["ab", "d", "fg"].

• string substring(string arg, integer fromIndex, integer length);

The substring(string, integer, integer) function accepts three arguments: the
first is string and the other two are integers. The function takes the arguments and returns a
substring of the defined length obtained from the original string by getting the length number of
characters starting from the position defined by the second argument. Thus,
substring("text", 1, 2) returns "ex".

• string translate(string arg, string searchingSet, string replaceSet);

The translate(string, string, string) function accepts three string arguments.
The number of characters must be equal in both the second and the third arguments. If some
character from the string specified as the second argument is found in the string specified as the

first argument, it is replaced by a character taken from the string specified as the third argument.
The character from the third string must be at the same position as the character in the second
string. Thus, translate("hello", "leo", "pii") returns "hippi".

• string trim(string arg);

The trim(string) function takes one string argument and returns another string with leading
and trailing white spaces removed.

• string unescapeUrl(string arg);

The function decodes escape sequences of illegal characters within components of specified URL
(see isUrl() CTL function for the URL component description). Escape sequences consist of a
percent character % symbol, followed by the two-digit hexadecimal representation (case-
insensitive) of the ISO-Latin code point for the character, e.g., %20 is the escaped encoding for the
US-ASCII space character.

• string upperCase(string arg);

The upperCase(string) function takes one string argument and returns another string with
cases converted to upper cases only.

	

Container	 Functions	

When you work with containers (list, map, record), you may use the following functions:

• elemenettype[] append(<element type>[] arg, <element type> list_element);

The append(<element type>[], <element type>) function accepts two arguments:
the first is a list of any element data type and the second is of the element data type. The function
takes the second argument and adds it to the end of the first argument. The function returns the
new value of list specified as the first argument.

This function is alias of the push(<element type>[], <element type>) function.
From the list point of view, append() is much more natural.

• void clear(<element type>[] arg);

The clear(<element type>[])function accepts one list argument of any element data
type. The function takes this argument and empties the list. It returns void.

• void clear(map[<type of key>,<type of value>] arg);

The clear(map[<type of key>,<type of value>])function accepts one map
argument. The function takes this argument and empties the map. It returns void.

• <element type>[] copy(<element type>[] arg, <element type>[] arg);

The copy(<element type>[], <element type>[]) function accepts two arguments,
each of them is a list. Elements of both lists must be of the same data type. The function takes the
second argument, adds it to the end of the first list and returns the new value of the list specified as
the first argument.

• void copyByName(record to, record from);

Copies data from the input record to the output record based on field names. Enables mapping of
equally named fields only.

• void copyByPosition(record to, record from);

Copies data from the input record to the output record based on fields order. The number of fields
in output metadata decides which input fields (beginning the first one) are mapped.

• map[<type of key>, <type of value>] copy(map[<type of key>, <type of value>]
arg, map[<type of key>, <type of value>] arg);

The copy(map[<type of key>, <type of value>], map[<type of key>,
<type of value>]) function accepts two arguments, each of them is a map. Elements of
both maps must be of the same data type. The function takes the second argument, adds it to the
end of the first map replacing existing key mappings and returns the new value of the map
specified as the first argument.

• list[] getKeys(map[<type of key>, <type of value>] arg);

The function returns a list of your map's keys. Remember the list has to be the same type as
map's keys, e.g.:

 map[string, integer] myMap; // filling the map with values, e.g. myMap["first"] = 1; string[] listOfKeys = getKeys(myMap);

• <element type>[] insert(<element type>[] arg, integer position, <element type>
newelement);

The insert(<element type>[], integer, <element type>)function accepts
the following arguments: the first is a list of any element data type, the second is integer, and the
other is of the element data type. The function takes the third argument and inserts it to the list at
the position defined by the second argument. The list specified as the first argument changes to
this new value and it is returned by the function. Remember that the list element are indexed
starting from 0.

• boolean isEmpty(<element type>[] arg);

The isEmpty(<element type>[])function accepts one argument of list of any element
data type. It takes this argument, checks whether the list is empty and returns true, or false.

• boolean isEmpty(map[<type of key>,<type of value>] arg);

The isEmpty(map[<type of key>,<type of value>])function accepts one
argument of a map of any value data types. It takes this argument, checks whether the map is
empty and returns true, or false.

• integer length(structuredtype arg);

The length(structuredtype) function accepts a structured data type as its argument:
string, <element type>[], map[<type of key>,<type of value>] or
record. It takes the argument and returns a number of elements forming the structured data type.

• <element type> poll(<element type>[] arg);

The poll(<element type>[])function accepts one argument of list of any element data
type. It takes this argument, removes the first element from the list and returns this element. The
list specified as the argument changes to this new value (without the removed first element).

• <element type> pop(<element type>[] arg);

The pop(<element type>[])function accepts one argument of list of any element data type.
It takes this argument, removes the last element from the list and returns this element. The list
specified as the argument changes to this new value (without the removed last element).

• <element type>[] push(<element type>[] arg, <element type> list_element);

The push(<element type>[], <element type>)function accepts two arguments: the
first is a list of any data type and the second is the data type of list element. The function takes the
second argument and adds it to the end of the first argument. The function returns the new value of
the list specified as the first argument.

This function is alias of the append(<element type>[], <element type>) function.
From the stack/queue point of view, push() is much more natural.

• <element type> remove(<element type>[] arg, integer position);

The remove(<element type>[], integer)function accepts two arguments: the first is a
list of any element data type and the second is integer. The function removes the element at the
specified position and returns the removed element. The list specified as the first argument
changes its value to the new one. (List elements are indexed starting from 0.)

• <element type>[] reverse(<element type>[] arg);

The reverse(<element type>[])function accepts one argument of a list of any element
data type. It takes this argument, reverses the order of elements of the list and returns such new
value of the list specified as the first argument.

• <element type>[] sort(<element type>[] arg);

The sort(<element type>[])function accepts one argument of a list of any element data
type. It takes this argument, sorts the elements of the list in ascending order according to their
values and returns such new value of the list specified as the first argument.

Record	 functions	 (dynamic	 field	 access)	

These functions are to be found in the Functions tab, section Dynamic field access library inside the
Transform Editor.

• integer length();

Returns the number of fields of a record the function is called on.

• integer compare(reference record1, string field1, reference record2, string field2);

Compares two fields of given records. The fields are identified by their name. The function returns
an integer value which is either:

1. < 0 ... field2 is greater than field1
2. > 0 ... field2 is lower than field1
3. 0 ... fields are equal

• integer compare(reference record1, integer field1, reference record2, integer field2);

Compares two fields of given records. The fields are identified by their index (0 is the first field).
The function returns an integer value which is either:

1. < 0 ... field2 is greater than field1
2. > 0 ... field2 is lower than field1
3. 0 ... fields are equal

• boolean getBoolValue(reference record, integer field);

Returns the value of a boolean field. The field is identified by its index.

• boolean getBoolValue(reference record, string field);

Returns the value of a boolean field. The field is identified by its name.

• byte getByteValue(reference record, integer field);

Returns the value of a byte field. The field is identified by its index.

• byte getByteValue(reference record, string field);

Returns the value of a byte field. The field is identified by its name.

• date getDateValue(reference record, integer field);

Returns the value of a date field. The field is identified by its index.

• date getDateValue(reference record, string field);

Returns the value of a date field. The field is identified by its name.

• decimal getDecimalValue(reference record, integer field);

Returns the value of a decimal field. The field is identified by its index.

• decimal getDecimalValue(reference record, string field);

Returns the value of a decimal field. The field is identified by its name.

• integer getFieldIndex(reference record, string field);

Returns the index (zero-based) of a field which is identified by its name. If the field name is not
found in the record, the function returns -1.

• string getFieldLabel(reference record, integer field);

Returns the label of a field which is identified by its index. Please note a label is not a field's
name, see Field Name vs. Label vs. Description.

• string getFieldName(record argRecord, integer index);

The getFieldName(record, integer) function accepts two arguments: record and
integer. The function takes them and returns the name of the field with the specified index. Fields
are numbered starting from 0.

Important
The argRecord may have any of the following forms:

o $<port number>.*

E.g., $0.*

o $<metadata name>.*

E.g., $customers.*

o <record variable name>[.*]

E.g., Customers or Customers.* (both cases, if Customers was declared
as record in CTL.)

o lookup(<lookup table name>).get(<key value>)[.*]

E.g., lookup(Comp).get("JohnSmith") or
lookup(Comp).get("JohnSmith").*

o lookup(<lookup table name>).next()[.*]

E.g., lookup(Comp).next() or lookup(Comp).next().*

• string getFieldType(record argRecord, integer index);

The getFieldType(record, integer) function accepts two arguments: record and
integer. The function takes them and returns the type of the field with the specified index. Fields
are numbered starting from 0.

Important
Records as arguments look like the records for the getFieldName() function. See
above.

• integer getIntegerValue(reference record, integer field);

Returns the value of an integer field. The field is identified by its index.

• integer getIntegerValue(reference record, string field);

Returns the value of an integer field. The field is identified by its name.

• long getLongValue(reference record, integer field);

Returns the value of a long field. The field is identified by its index.

• long getLongValue(reference record, string field);

Returns the value of a long field. The field is identified by its name.

• number getNumValue(reference record, integer field);

Returns the value of a number field. The field is identified by its index.

• number getNumValue(reference record, string field);

Returns the value of a number field. The field is identified by its name.

• string getStringValue(reference record, integer field);

Returns the value of a string field. The field is identified by its index.

• string getStringValue(reference record, string field);

Returns the value of a string field. The field is identified by its name.

• string getValueAsString(reference record, string field);

Attempts to return the value of a field (no matter its type) as a common string. The field is
identified by its name.

• string getValueAsString(reference record, integer field);

Attempts to return the value of a field (no matter its type) as a common string. The field is
identified by its index.

• boolean isNull(reference record, string field);

Checks whether a given field is null. The field is identified by its name.

• boolean isNull(reference record, integer field);

Checks whether a given field is null. The field is identified by its index.

• void setBoolValue(reference record, integer field, boolean value);

Sets a boolean value to a field. The field is identified by its index.

• void setBoolValue(reference record, string field, boolean value);

Sets a boolean value to a field. The field is identified by its name.

• void setByteValue(reference record, integer field, byte value);

Sets a byte value to a field. The field is identified by its index.

• void setByteValue(reference record, string field, byte field);

Sets a byte value to a field. The field is identified by its name.

• void setDateValue(reference record, integer field, date value);

Sets a date value to a field. The field is identified by its index.

• void setDateValue(reference record, string field, date value);

Sets a date value to a field. The field is identified by its name.

• void setDecimalValue(reference record, integer field, decimal value);

Sets a decimal value to a field. The field is identified by its index.

• void setDecimalValue(reference record, string field, decimal value);

Sets a decimal value to a field. The field is identified by its name.

• void setIntValue(reference record, integer field, integer value);

Sets an integer value to a field. The field is identified by its index.

• void setIntValue(reference record, string field, integer value);

Sets an integer value to a field. The field is identified by its name.

• void setLongValue(reference record, integer field, long value);

Sets a long value to a field. The field is identified by its index.

• void setLongValue(reference record, string field, long value);

Sets a long value to a field. The field is identified by its name.

• void setNumValue(reference record, integer field, number value);

Sets a number value to a field. The field is identified by its index.

• void setNumValue(reference record, string field, number value);

Sets a number value to a field. The field is identified by its name.

• void setStringValue(reference record, integer field, string value);

Sets a string value to a field. The field is identified by its index.

• void setStringValue(reference record, string field, string value);

Sets a string value to a field. The field is identified by its name.

	

Miscellaneous	 Functions	

The rest of the functions can be denominated as miscellaneous. They are the functions listed below.

Important
Remember that the object notation (e.g., arg.isnull()) cannot be used for these
Miscellaneous functions!

For more information about object notation see Functions Reference.

• <any type> iif(boolean con, <any type> iftruevalue, <any type> iffalsevalue);

The iif(boolean, <any type>, <any type>) function accepts three arguments: one
is boolean and two are of any data type. Both argument data types and return type are the same.

The function takes the first argument and returns the second if the first is true or the third if the
first is false.

• boolean isnull(<any type> arg);

The isnull(<any type>) function takes one argument and returns a boolean value
depending on whether the argument is null (true) or not (false). The argument may be of any data
type.

Important
If you set the Null value property in metadata for any string data field to any non-
empty string, the isnull() function will return true when applied on such string.
And return false when applied on an empty field.

For example, if field1 has Null value property set to "<null>",
isnull($0.field1) will return true on the records in which the value of field1
is "<null>" and false on the others, even on those that are empty.

See Null value for detailed information.

• <any type> nvl(<any type> arg, <any type> default);

The nvl(<any type>, <any type>) function accepts two arguments of any data type.
Both arguments must be of the same type. If the first argument is not null, the function returns its
value. If it is null, the function returns the default value specified as the second argument.

• <any type> nvl2(<any type> arg, <any type> arg_for_non_null, <any type> arg_for_null);

The nvl2(<any type>, <any type>, <any type>) function accepts three arguments
of any data type. This data type must be the same for all arguments and return value. If the first
argument is not null, the function returns the value of the second argument. If the first argument is
null, the function returns the value of the third argument.

• void printErr(<any type> message);

The printErr(<any type>) function accepts one argument of any data type. It takes this
argument and prints out the message on the error output.

This function works as void printErr(<any type> arg, boolean
printLocation) with printLocation set to false.

• void printErr(<any type> message, boolean printLocation);

The printErr(type, boolean) function accepts two arguments: the first is of any data
type and the second is boolean. It takes them and prints out the message and the location of the
error (if the second argument is true).

• void printLog(level loglevel, <any type> message);

The printLog(level, <any type>) function accepts two arguments: the first is a log
level of the message specified as the second argument, which is of any data type. The first
argument is one of the following: debug, info, warn, error, fatal. The log level must be
specified as a constant. It can be neither received through an edge nor set as variable. The function
takes the arguments and sends out the message to a logger.

• void raiseError(string message);

The raiseError(string) function takes one string argument and throws out error with the
message specified as the argument.

• void sleep(long duration);

The function pauses the execution for specified milliseconds.

Lookup	 Table	 Functions	

In your graphs you are also using lookup tables. You need to use them in CTL by specifying the name of
the lookup table and placing it as an argument in the lookup() function.

Warning
Remember that you should not use the functions shown below in the init(), preExecute(),
or postExecute() functions of CTL template.

Now, the key in the function below is a sequence of values of the field names separated by comma (not
semicolon!). Thus, the key is of the following form:
keyValuePart1,keyValuePart2,...,keyValuePartN.

See the following options:

• lookup(<lookup name>).get(keyValue)[.<field name>|.*]

This function searches the first record whose key value is equal to the value specified in the
get(keyValue) function.

It returns the record of the lookup table. You can map it to other records in CTL (with the same
metadata). If you want to get the value of the field, you can add the .<field name> part to the
expression or .* to get the values of all fields.

• lookup(<lookup name>).count(keyValue)

If you want to get the number of records whose key value equals to keyValue, use the syntax
above.

• lookup(<lookup name>).next()[.<field name>|.*]

After getting the number of duplicate records in lookup table using the lookup().count()
function, and getting the first record with specified key value using the lookup().get()
function, you can work (one by one) with all records of lookup table with the same key value.

You need to use the syntax shown here in a loop and work with all records from lookup table.
Each record will be processed in one loop step.

The mentioned syntax returns the record of the lookup table. You can map it to other records in
CTL (with the same metadata). If you want to get the value of the field, you can add the
.<field name> part to the expression or .* to get the values of all fields.

Example 55.9. Usage of Lookup Table Functions

//#CTL // record with the same metadata as those of lookup table
recordName1 myRecord; // variable for storing number of duplicates
integer count; // Transforms input record into output record. function
integer transform() { // if lookup table contains duplicate
records, // their number is returned by the following expression
// and assigned to the count variable count =
lookup(simpleLookup0).count($0.Field2); // getting the first
record whose key value equals to $0.Field2 myRecord =
lookup(simpleLookup0).get($0.Field2); // loop for searching the
last record in lookup table while ((count-1) > 0) { //
searching the next record with the key specified above myRecord =
lookup(simpleLookup0).next(); // incrementing counter count-
-; } // mapping to the output // last record from
lookup table $0.Field1 = myRecord.Field1; $0.Field2 =
myRecord.Field2; // corresponding record from the edge
$0.Field3 = $0.Field1; $0.Field4 = $0.Field2; return 0; }
	

Warning
In the example above we have shown you the usage of all lookup table functions. However, we
suggest you using other syntax for lookup tables.

The reason is that the following expression of CTL:

lookup(Lookup0).count($0.Field2);

searches the records through the whole lookup table which may contain a great number of records.

The syntax shown above may be replaced with the following loop:

myRecord = lookup(<name of lookup table>).get(<key value>);
while(myRecord != null) { process(myRecord); myRecord =
lookup(<name of lookup table>).next(); }

Especially DB lookup tables can return -1 instead of real count of records with specified key value
(if you do not set Max cached size to a non-zero value).

Important
Remember that DB lookup tables cannot be used in compiled mode! (code starts with the
following header: //#CTL:COMPILE)

You need to switch to interpreted mode (with the header: //#CTL) to be able to access DB lookup
tables from CTL.

Sequence	 Functions	

In your graphs you are also using sequences. You can use them in CTL by specifying the name of the
sequence and placing it as an argument in the sequence() function.

Warning

Remember that you should not use the functions shown below in the init(), preExecute(),
or postExecute() functions of CTL template.

You have three options depending on what you want to do with the sequence. You can get the current
number of the sequence, or get the next number of the sequence, or you may want to reset the sequence
numbers to the initial number value.

See the following options:

• sequence(<sequence name>).current()
• sequence(<sequence name>).next()
• sequence(<sequence name>).reset()

Although these expressions return integer values, you may also want to get long or string values. This can
be done in one of the following ways:

• sequence(<sequence name>,long).current()
• sequence(<sequence name>,long).next()
• sequence(<sequence name>,string).current()
• sequence(<sequence name>,string).next()

CTL	 Appendix	 -‐	 List	 of	 National-‐specific	 Characters	

Several functions, e.g. editDistance (string, string, integer, string, integer) need to work with special
national characters. These are important especially when sorting items with a defined comparison strength.

The list below shows first the locale and then a list of its national-specific derivatives for each letter. These
may be treated either as equal or different characters depending on the comparison stregth you define.

Table 55.2. National Characters

Locale National	 Characters

CA	 -‐	 Catalan

Locale National	 Characters

CZ	 -‐	 Czech

DA	 -‐	 Danish	 and	 Norwegian

DE	 -‐	 German	

ES	 -‐	 Spanish	

ET	 -‐	 Estonian

FI	 -‐	 Finnish

Locale National	 Characters

FR	 -‐	 French

HR	 -‐	 Croatian

HU	 -‐	 Hungarian

IS	 -‐	 Icelandic

IT	 -‐	 Italian

Locale National	 Characters

LV	 -‐	 Latvian

PL	 -‐	 Polish

PT	 -‐	 Portuguese

RO	 -‐	 Romanian

Locale National	 Characters

RU	 -‐	 Russian

SK	 -‐	 Slovak

SL	 -‐	 Slovenian

SQ	 -‐	 Albanian

SV	 -‐	 Swedish

Chapter 56. Regular Expressions

A regular expression is a formalism used to specify a set of strings with a single expression. Since the
implementation of regular expressions comes from the Java standard library, the syntax of expressions is
the same as in Java.

Example 56.1. Regular Expressions Examples

[p-s]{5}

• means the string has to be exactly five characters long and it can only contain the p, q, r and s
characters

[^a-d].*

• this example expression matches any string which starts with a character other than a, b, c, d
because

o the ^ sign means exception
o a-d means characters from a to d
o these characters can be followed by zero or more (*) other characters
o the dot stands for an arbitrary character

For more detailed explanation of how to use regular expressions see the Java documentation for
java.util.regex.Pattern.

The meaning of regular expressions can be modified using embedded flag expressions. The expressions
include the following:

(?i) – Pattern.CASE_INSENSITIVE
Enables case-insensitive matching.

(?s) – Pattern.DOTALL
In dotall mode, the dot . matches any character, including line terminators.

(?m) – Pattern.MULTILINE
In multiline mode you can use ^ and $ to mean the beginning and end othe line, respectively (that
includes at the beginning and end of the entire expression).

Further reading and description of other flags can be found at
http://docs.oracle.com/javase/tutorial/essential/regex/pattern.html.

	

